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Abstract

The Semi-Discrete Galerkin Finite Element Modelling of

Compressible Viscous Flow Past an Airfoil

by

Andrew J. Meade, Jr.

A method is developed to solve the two-dimensional, steady, compressible, turbulent

boundary-layer equations and is coupled to an existing Euler solver for attached tran-

sonic airfoil analysis problems. The boundary-layer formulation utilizes the semi-discrete

Galerkin (SDG) method to model the spatial variable normal to the surface with linear finite

elements and the time-like variable with finite differences. A Dorodnitsyn transformed

system of equations is used to bound the infinite spatial domain thereby permitting the use

of a uniform finite element grid which provides high resolution near the wall and automati-

cally follows boundary-layer growth. The second-order accurate Crank-Nicholson scheme

is applied along with a linearization method to take advantage of the parabolic nature of the

boundary-layer equations and generate a non-iterative marching routine. The SDG code

can be applied to any smoothly-connected airfoil shape without modification and can be

coupled to any inviscid flow solver. In this analysis, a direct viscous-inviscid interaction

is accomplished between the Euler and boundary-layer codes through the application of a

transpiration velocity boundary condition. Results are presented for compressible turbu-

lent flow past NACA 0012 and RAE 2822 airfoils at various freestream Mach numbers,

Reynolds numbers, and angles of attack. All results show good agreement with experi-

ment, and the coupled code has proven to be a computationally-efficient and accurate airfoil

analysis tool.
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Chapter 1

Introduction

The successful application of computational fluid dynamics to the design and analysis

of two-dimensional airfoils in transonic flow regimes has been accomplished by a large

number of researchers in the past fifteen years. Analysis of the entire flowfield around

wing sections can generally be performed through the use of two main techniques. The

first technique is to solve some practical form of the Navier-Stokes equations for the entire

flowfield. The second technique involves the solution of the boundary-layer equations

in the viscous flowfield region and either the potential or Euler equations in the inviscid

flowfield region. Iteratively solving the viscous and inviscid equations while enforcing a

compatibility condition then yields a solution for the entire flowfield.

The Navier-Stokes methods, while modelling most of the physical flow mechanisms

and providing accurate results, require large amounts of computer time and storage. The

coupled viscous-inviscid methods are generally 30-500 times faster than the Navier-Stokes

methods and generate results of adequate accuracy [33]. Advances in computer hardware

technology are constantly narrowing the computational advantage held by coupled methods

over the Navier-Stokes methods. However, coupled methods should continue to be partic-

ularly important in an interactive airfoil design environment where near real-time flowfield

analysis is desired.

The numerical solution of the classical boundary-layer equations has traditionally been

accomplished through the use of finite differences [1]. The finite element method has been

used only since 1972 to obtain numerical boundary-layer solutions, even though the method

itself has been in existence since 1915 [11]. Traditionally, the finite element treatment of

two-dimensional boundary-layer flow has involved the use of finite differences in the

streamwise direction to capitalize on the parabolic nature of the boundary-layer equations.

Coordinate transformations, which reduce the number of dependent variables or generate

computational grids suited for finite elements, have also been used.

In 1960, A.A. Dorodnitsyn developed and applied a set of boundary-layer transfor-

mations which are well-adapted to the finite element method of solution [15]. Initially,

the transformations were used along with the method of integral relations to solve various
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classesof supersonicboundary-layerflows [2]. Fletcher and Fleet successfully applied the

finite element method to the laminar and turbulent incompressible Dorodnitsyn form of the

boundary-layer equations [3], [18]. Meade and Strong have extended the method to solve

laminar compressible flow about cones and airfoils, respectively [17], [4].

Prandtl proposed that the inviscid pressure distribution could be determined to a higher-

order accuracy by recalculating the potential flow while accounting for the displacement

thickness of the boundary layer [5]. Perhaps the most notable transonic airfoil analysis

code, employing Prandtl's direct interaction procedure to couple Green's [6] lag-entrainment

boundary-layer code with an inviscid full-potential code, is the viscous Garabedian and Korn

program developed by Collyer and Lock [7]. Another notable example is the GRUMFOIL

program developed by Melnik, Chow, Mead, and Jameson [8]. A great deal of research has

been performed to develop viscous-inviscid coupling mechanisms which do not have the

disadvantages associated with the direct displacement thickness approach. The transpiration

velocity boundary condition, as suggested by Lighthill [24], has been used as the viscous-

inviscid coupling mechanism by Van Dalsem, Steger, and Rao with success [26].

The viscous, compressible, transonic airfoil analysis method presented in this text is

based on the direct viscous-inviscid interaction of finite element boundary layer and fi-

nite difference Euler codes. The present work extends the semi-discrete Galerkin (SDG)

boundary-layer formulation to include turbulent flow. A direct transpiration velocity

viscous-inviscid interaction approach will be used to couple the SDG method with an

innovative Euler solver (GAUSS2) which employs a shock fitting technique. The coupled

codes will be used to analyze flow about a NACA 0012 and RAE 2822 airfoil for attached,

turbulent, compressible flow.



Chapter 2

Finite Element Method

The finite element method is a numerical analysis technique for obtaining piecewise approx-

imate solutions to the governing equations of a wide variety of engineering problems. The

principle of the finite element method is to replace a continuum, having an infinite number

of unknowns, with a discretized domain of assembled elements, having a finite number of

unknowns. The unknown field variable is expressed in terms of assumed approximating

functions within each element. The approximating, or interpolation, functions are defined

in terms of field variable values at specific points or nodes. Each element has a prescribed

number of nodes which may be on the boundary, where connections to other elements are

made, or in the interior of the element. Thus, the nodal values of the field variable and

the interpolation functions completely define the behavior of the field variable within the

elements.

The solution to any continuum problem by the finite element method is accomplished

in the following steps [10]:

• Discretize the continuum

• Select interpolation functions

• Find the element properties

• Assemble the element properties to obtain the system of equations

• Solve the system equations

2.1 Finite Element Approximation

Consider _(x) as an approximate, or trial, solution to the one-dimensional field variable

¢(x), which can be written as
M

(_(x) = _ N,(z)¢,, (2.1)
i---1
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where ii are the nodal unknowns, Ni(x) are the interpolation functions, and M is the total

number of nodes or nodal unknowns. The derivative of if(z) is approximated in this finite

element representation by

dz = dz "
i=1

Referring to Figure 2.1, it can be seen that when linear interpolation functions N_ are used,

_(z) interpolates the function i(z) linearly over each element.

(x)

• ¢i
_(x)

_i .......... #(x)

"°''''''°'" ' .... "'°''*°'''''''" I

• • '_÷

• "" node i+1

_i-1 ._

node i-1

I element A , I element B I

xi. 1 x i xi+ 1

Figure 2.1 Finite Element Representation of i(z)

2.2 Interpolation Functions

Interpolation functions are normally chosen to be locally defined polynomials within each

element. It can be seen from Figure 2.2 that linear interpolation functions fall from a

maximum value of one at a particular node to zero at the two neighboring nodes and

axe zero throughout the rest of the domain. Therefore, even though Equation 2.1 is a

global equation, only two nodal unknowns and two interpolation functions make a nonzero

contribution in any particular element. As shown in Figure 2.2, the local shape functions



satisfythefollowing conditionsin eachelement(e):

=0
M

N!_)(x) = 1

if x not in element (e)

for all x in element (e)
i=1

It is also necessary that the interpolation functions be chosen in such a way that the field

N(x)

node i-1 node i node i+1

Ni.1

NiA Ni+l B

element A element B

x i-1 x i x i+1

Figure 2.2 Linear Interpolation Function N (_)(x)

variable ¢(x) and any of its derivatives, up to one order less than the highest order derivative

appearing in the weak form of the equation, be continuous at the element boundaries [I 1].

The linear interpolation functions can be determined by using Lagrange polynomials and,

for elements A and B, take the form

viA_ _.. _£-- Xi Ni A = X -- Xi-1
Xi_ 1 -- X i X, -- Xi_ I

-,tNB_ X- X='+I ''I-I-N'Bi __ X- X i i

x, - x,+, -
(2.3)
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2.3 Method of Weighted Residuals

The method of weighted residuals is a technique for obtaining approximate solutions to

partial differential equations. The method of weighted residuals is one of many approaches,

namely the direct approach, the variational approach, or the energy-balance approach, used

to determine the finite element matrix equations which express the properties of individual

elements.

Applying the method of weighted residuals involves basically two steps. The first

step is to assume the general functional behavior of the dependent field variable so that the

given differential equation and boundary conditions are approximately satisfied. A residual,

which is required to vanish over the entire solution domain, results when the approximation

is substituted into the original differential equation and boundary conditions. The second

step is to solve the equation(s) resulting from step one for a particular function.

Consider finding an approximate functional representation for the field variable ¢ which

is governed by the differential equation

L(¢)- f = 0, (2.4)

where L represents the differential operator and f is a known function of the independent

variables. The differential equation resides in the domain D bounded by the surface S,

where proper boundary conditions are prescribed. The unknown exact solution for ¢ can

be approximated by ¢ as
M

¢ ,_ ¢ = _ Ni¢i, (2.5)
i=l

where Ni are the assumed functions and ¢_ are the unknown parameters. The M functions

Ni are usually chosen to satisfy the global boundary conditions.

When ¢ is substituted into Equation 2.4, a residual R results from the approximation

and is given by

n = L(¢) - f. (2.6)

The method of weighted residuals seeks to determine the M unknowns ¢i in such a way that

the error R over the entire solution domain is minimized. This is accomplished by forming

a weighted average of the error and specifying that this weighted average vanish over the

solution domain. Therefore, choosing M linearly independent weighting functions Wj and

insisting that if

fD Wj [L(¢)- f] dD = fD W3RdD =0, j= 1,2,...,M (2.7)



then R _ 0. The form of error distribution principle used in Equation 2.7 is dependent

on the choice of weighting function. There are a variety of weighted-residual techniques

which can be employed; the most popular error distribution principle is the Galerkin

Method. The Bubnov-Galerkin (classical Galerkin) method uses the interpolation functions

Nj as the weighting functions Wj, while the Petrov-Galerkin method specifies Wj as some

modification of Nj.

2.3.1 Petrov-Galerkin Method

The Petrov-Galerkin method is used in applications of the method of weighted residuals

when specific requirements must be imposed on the finite element solution. The weighting

function in this method is represented by

Wj = Pj, (2.8)

where Pj is an analytic function similar to the Bubnov-Galerkin interpolation function Nj

but with additional terms or factors to impose the specific solution requirements. The use

of the Petrov-Galerkin method has been based in part on its ability to produce asymmetric

weighting functions which force diagonal dominance of the finite element matrix equations

and reduce the oscillatory solution behavior in convection-dominated fluid flows [ 11].

2.4 Semi-Discrete Galerkin Method

The semi-discrete Galerkin method is a hybrid finite element and finite difference numerical-

analysis technique which uses a finite element representation for the spatial variables and

models the time or time-like variables by finite differences. The semi-discrete Galerkin

(SDG) method is best demonstrated by its application to the one-dimensional, unsteady,

nondimensionalized Heat Conduction equation:

o¢ 02¢
=0 (2.9)

Ot Oz 2

The initial and boundary conditions for ¢(x, t), over the interval 0 <_ x < 1, are given by

¢(5,0) = ¢(o,t)=o,

Substituting an approximate solution for ¢,

M

¢(x,t) = _ N,(x)¢i(t),
i=l

¢(1,t) = 1. (2.10)

(2.11)
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intoEquation2.9andapplyingthemethodof weightedresidualsgives

/"

Jo Wj _, cgt c9z2 ] dx = 0, (2.12)

where j = 1,2, ..., M. The classical Galerkin method can be used by taking the weighting

function as the interpolation function:

(2.13)% = Nj(x)

Therefore, Equation 2.12 becomes

Nj dX - fo NJ-. z2ax= O. (2.14)

In order to satisfy the continuity requirements for linear interpolation functions, it is nec-

essary to reduce the second partial differential by applying the Green-Gauss theorem. The

Green-Gauss theorem in one-dimension is simply an integration by parts which gives

dx "_z + Nj Ox o" (2.15)

The last term in Equation 2.15 represents the natural boundary conditions. If Neumann

boundary conditions are present, it would be appropriate to replace the boundary term with

the given condition. However, Dirichlet boundary conditions are specified so the bound-

ary term remains incorporated in the governing equation. Substituting the approximate

solutions for ,_ and _ into Equation 2.15 produces the following finite element equation:

,=, ;--I Io

Rewriting in a more convenient form by introducing the coefficients,

Alji = N.Nidx, A2ji = dx

gives

(2.16)

M d¢i M M l
Alji - - Y'. A2ji¢i + g_ __, dNi ¢i[ . (2.17)

i=1 dt _=1 i=1 dx Io

A time-independent discretization in x (uniform) allows the solution of A1 and A2 to be

obtained prior to the rest of the the solution process. The elements of matrices A1 and

A2 can be solved exactly by Gaussian quadrature if lower-order polynomials are chosen as
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interpolationfunctions.Also, thematricesbecometridiagonalif theinterpolationfunctions
arechosento be linear. Modifying A2 to absorb the natural boundary conditions and

renaming as A3 result in the following system of ODE's:

_ Alji_t _ = - _ A3ji4,_
i=1 i=1

The boundary conditions in nodal form are given by

(2.18)

'h = 0, 4_M = 1.

To utilize the parabolic nature of the governing equations, a marching routine is invoked

by using a finite difference discretization for aa-_t',

= _ (2.19)
t n+l -- t n At

where n denotes the time level. The resulting A_b_+l may then be solved for using the theta

method:

_-'_A1./iAq_ +l =-At O__A3.,qb_. +' +(1-O)__A3jiO_. (2.20)
i=1 i=l i=1 J

The value of 0 controls the degree of implicitness. A number of schemes which depend on

the value of theta may be employed:

0=0.0

O= 1.0

0=0.5

fully-explicit Euler forward

fully-implicit Euler backward

second-order accurate Crank-Nicholson

Choosing the Crank-Nicholson technique and linearizing Equation 2.20 converts the system

of ordinary differential equations into a system of linear algebraic equations given by

M M

(Alji + OAtA3ji) Aq_ +1 = -At _ A3./i_b_. (2.21)
i=1 i=1

A detailed discussion of the lineadzation is given in Section 3.3.

The right-hand side of Equation 2.21 is known for a given time increment At and initial

condition _b_'. The left-hand side array forms a tridiagonal matrix of size (M x M) that

may be efficiently solved by the Thomas Algorithm which is ideally suited for equations of

this type [13]. The Thomas Algorithm requires an order of M operations (O(M)) which

is more efficient than the O(M 2) operations necessary for Gaussian elimination. After the
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systemof equations has been solved, A¢_ +1 is added to the known value ¢_ to give ¢_+1.

The marching routine continues as ¢_+1 is used in the fight-hand side of the equation to

solve for A¢_ +1 at the next time step. The time step is varied to obtain a desired accuracy,

instead of performing iterations, which results in a computationally efficient algorithm.

2.5 Group Finite Element Method

Finite element treatment of the nonlinear convective terms, which are present in most

flow problems, is traditionally accomplished by the introduction of a separate approximate

solution for each contributing variable in the nonlinear terms. The group finite element

method permits the nonlinear convective terms to be represented without introducing a

separate approximate solution for each variable. Since the added connectivity of separate

approximate solutions is avoided, the group finite element formulation can model nonlinear

terms and avoid having products of nodal values over all connected nodes in a particular

element [12].

The group finite element method consists of transforming any convective terms into

a divergence form and then employing supplementary solutions for these terms. The

group method is best demonstrated by its application to the one-dimensional, unsteady,

nondimensionalized Burger's equation:

Transforming the convective term into a divergence form,

(2.22)

and substituting into Equation 2.22 gives

0¢ 1 0(¢:) 1 02¢ (2.24)
0-'-[+20x - Re Ox 2"

The supplemental approximate solution is then introduced for the group ¢2 as

M

eZ(x,t) = y_ g,(z)¢_(t). (2.25)
i=l

After substituting the supplemental approximate solution into Equation 2.24 and applying

Galerkin's method with linear elements on a uniform grid, the following system of ODE's

¢_xx -2.0¢ 1 0(¢ 2)_xx, (2.23)
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is produced:

(9(1 _ 1 ) 1 ffi+l-_i-i¢_-1 + _ + _+1 + _ (_-i + _+1) 2Az

__ _.1__1(_bi_, - 2ffi + ffi+l )Re Az 2 (2.26)

The traditional finite element formulation produced the following similar system of ODE's:

0 (1 _ 1 ) 1 _i+l-_i-,¢i-1 + _i + _4,i+1 + _ (ff_-I + ¢i + _'i+x) 2Az

__ 1..1_ (ffi-, - 2ffi + ffi+, )Re Az 2 (2.27)

As seen in the second term of Equations 2.26 and 2.27, the group method produces

a computationally more economical finite element form of Burger's equation by reducing

the nodal connectivity of the convective term. The group finite element method becomes

progressively more economical as the order of nonlinearity or the number of dimensions

increases and generally produces a more accurate finite element scheme [12].
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Chapter 3

Boundary Layer Formulation

The boundary-layer approximation of the Navier-Stokes equations is valid if the viscous

flow region, prior to separation from a body, is assumed to be thin. That is, the boundary-

layer thickness is much smaller than the characteristic length of the body in question.

Prandtl proposed that the following assumptions could be made about thin shear layer flows

[141:

• negligible body forces

• negligible normal viscous stresses

• negligible normal pressure gradient

• normal velocity << tangential velocity

• tangential velocity gradients << normal velocity gradients

3.1 Governing Equations

The equations of motion for steady, compressible, and turbulent boundary-layer flow are

given in terms of dimensional variables:

Continuity:

Momentum:

0 0
(_/+ _ (_) = 0 (3.1)0--_z

0_ a[ 0_]Oi: + 0-_ (p +/5,) _-_ (3.2)

Energy:

_Z_x + P_ Off -- Pr c9_ (p + fzt) o[ (3.3)
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The Prandtl numberis assumedconstant,and the perfectgasassumptionservesasthe

equationof stateof the fluid. The grosseffectsof turbulencein the boundarylayer are
accountedfor usingtheeddy-viscositymodel

t5_"-"_', (3.4)

where the tilde denotes average values and the prime denotes fluctuating values [9].

Dropping the tilde and prime notation, the dimensional velocity components are denoted

as fi in the local $: coordinate and _ in the local _ coordinate. The dimensional pressure,

density, laminar viscosity, turbulent viscosity, and total enthalpy are shown as p, p,/_,/h,

and jr/, respectively.

The initial conditions for velocity and temperature are provided at i: = i:o and repre-

sented by

fi(ko,9) = fio(_7), _(£'o, _) = _o(._), and f'(£'o, 9) = f'o(9), (3.5)

where fio(_), _o(,_), and To(if) are known quantities.

Boundary conditions are prescribed at ,_ = 0 and _2 = oo. The boundary conditions

for velocity are obtained by noting the no-slip condition at the surface of the body and that

the tangential velocity approaches the magnitude of the inviscid velocity at the edge of the

boundary layer. The velocity boundary conditions are given by

fi(i:,0)=O(i:,0)=0 and fi(._,oe)=fi,(i:), (3.6)

where fi_(:7:) is the velocity at the edge of the boundary layer obtained from a solution of

the inviscid equations of motion. The heat-transfer boundary conditions for temperature

are given by

T(i:,0) = _,(i:) and T(i:,oo)= L(i:), (3.7)

where w and e denote wall and boundary-layer edge conditions, respectively. If an adiabatic

wall is prescribed, the following boundary conditions for temperature are required:

0_ II =0 and 7_(i:,oo)= L(_:)
-_ I_=0

(3.8)

The equations of motion, Equations 3.1-3.3, can be nondimensionalized by employing

a characteristic length L, critical speed of sound 5", and free-stream density _. The
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dimensionlessvariablesaredefinedasfollows:

z= L y=_ u=a, v= ,

t5 _ P H - opt + _(fi2 + _2) (3.9)

After substitution of the nondimensionalized parameters and simplifying, the continuity

equation becomes
0 0

,9-;("_')+ _ (pv) = 0. (3.10)

Since pressure is only a function of x and is transmitted unchanged through the boundary

layer,

0p @ @_
COx - dx - dx '

where p, is the dimensionless pressure at the edge of the boundary layer. Substituting the

pressure term along with the nondimensionalized parameters into the momentum equation

gives

COu COu dp_ CO[ COu] (3.11)P_'_ + P_'_ = - d--2+ _ (_'+ _'')_

Similarly, the energy equation takes the form

CO. CO. 1 (9 [ OH] (1) (9 [ CO (_)]PU'o----x+PV(gy-Pr(gy (_+#')'_y + 1-P--_r _yy ("+"t)_yy . (3.12)

3.2 Traditional Dorodnitsyn Formulation

A. A. Dorodnitsyn applied the method of integral relations to the compressible boundary-

layer equations and transformed them into a form resembling the incompressible equations

[15]. Dorodnitsyn used the following expressions to transform the body-normal x and y

coordinate system to a _ and r/computational plane and smooth both velocity and density

over the boundary layer:

I u_p_dx (3.13)
= u_p_

_e j_o yr1 -- (u_t_)_ pdy (3.14)

The Dorodnitsyn formulation utilized a normalized velocity fi

U

= -, (3.15)
t/e
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and an intermediate variable if, given by

!

vtb=fi + ----. (3.16)
ucpe Ox u_ T

Employing the Dorodnitsyn relations results in the following form of the continuity equa-

tion:

Off O_

0-'--_+ 0---_-= 0 (3.17)

It is assumed that the variation of laminar viscosity across the boundary layer can be

represented by the linear relation

= Cor (3.18)
tt_ T'_-_'

where Co is the Chapman-Rubesin constant. A full explanation of the assumption is given

in Reference [16]. Applying the Chapman-Rubesin relation, ideal-gas law, Dorodnitsyn

relations, and a viscosity parameter a

cr = 1 +/t-5, (3.19)
/z

results in the following form of the momentum equation:

^ Off ^ OfL 1 due (I - fi2) + Coff---_ (a Ofi_ (3.20)

Using a new variable s which relates enthalpy and the ratio of specific heats (3' = %/cv)

s= 1-2H_-_-
(3.21)

with the Dorodnitsyn relations results in the following form of the energy equation:

,Os Os _1 due^ Co 0 {aOs) (v__7-1) { 1 _ 1') 0 [,, Oft'_
It _--_7 ..t- I_-N-- -Jr-2-- --_ It 8 -- (3.22)

o¢ or/ ue a_

The Dorodnitsyn formulation, representing the two-dimensional, compressible, boundary-

layer equations in incompressible form with respect to the independent variables, ( and r/,

is therefore given by Equations 3.17, 3.20, and 3.22. An integral form of these equations

can be obtained by applying the method of weighted residuals.

After using a general weighting function f(fi) and summing the products of Equation

3.17 x f and Equation 3.20 x d.t the first Dorodnitsyn equation appears as
da2'

0(fif) 0(t_S) 1 due (1- fi2) dS ,,-, df 0 (crOfi_
o--U+ or/ + \ or//"

(3.23)
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Integrating the above equation with respect to 77and reducing gives the following:

Jo ftfd'7 + wfl_ = L (1 - fi2) dr/+ dr/ (3.24)

Applying the Crocco transformation to the integral equation changes the independent vari-

able 7#to fi [17]. The transformation makes use of the nondimensionalized shear stress and

is given by

Zft = rd'7, (3.25)

or
Oft

r = --. (3.26)
0'7

Substituting the Crocco transformation into Equation 3.24 and noting that the limits of

integration are changed from '7 = 0 _ oo to fi = 0 _ 1, gives

-L --/0 Sod _ftylda+Cvfl,o= 1 due l(l_ft2) dfldfi+C ° ----(ar)dfi. (3.27)
d_ r u_ d_ dft 7" dft aft

Assuming that there is no surface injection, v, and hence ff_, is zero at the wall. Therefore,

if f(fi) is chosen to vanish at the edge of the boundary layer, the traditional Dorodnitsyn

formulation for the first integral equation reduces to

d 1 1 1 due 1_ foos-;_o- /o(1-°_l_/.'-_°+_oL' dso_o,_,_o._._
After using a general weighting function f(ft) and summing the products of Equation

3.17 x s x f, Equation 3.20 x s × _, and Equation 3.22 x f, the second Dorodnitsyn

equation appears as

cg( fLf s) c3( ff_f s )
+--

c9_ 0,7
1 du¢^ 1 due (1 df_ -2_TT,,s_+---,,_< -_)_

dsa (,,_'_ COsL(,,_
+ C°_u_ t a'Tj _ + P,- a, t 0'7)

-1) 1 _1) O [^ Oh'_

Integrating the above equation with respect to r/and reducing gives the following:

_/=os..,,+_s.l::
a_.,o

(3.29)

+

+

io: ' <'""i( ('- °')'s1 due fifsd'7 + m__
u_ d_ u¢ d_ -_u sd'7

CoL _ '_s a (, a_,_ Co _ 0 (, 0_da 0'7\ o,_) ,,z'7+ _ fo f _ \ o'7)e,

2C0 (_-

_ oo ^ c9_

1) 1 fCO(uo'-ff_d'7' / (3.30); 1) (_r - 1) L 0'7
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Using the Green-Gauss theorem to reduce the second-order derivative of s with respect to

_1,and again applying the Crocco transformation while noting the previous assumptions for

f(a) and t_, gives the modified Dorodnitsyn formulation for the second integral equation:

-- fi f S da = -2--_ fi f S_dfi + __ _ fi2)
d_ 7" u, d_ r u, d_ -_u _ au

+ COfoldfsO Co. Osll Co 'df Os..

-1)
+ 2co ¥1)

-1)
+

2Co(._ + I)
(3.31)

In order to permit a more physically-oriented solution procedure, it is desirable to use

the independent variable x in place of _. Making use of the fact that

d d dz dx uoopo_

d--_= dx d_' where d'-_ = u,p,

Equations 3.28 and 3.31 become

1 dU, fol (i_h2) dfldft+Co uep_____L_efol df 0
u, dx -_u 7" uoopo¢ dft Oft

d fold'-_ ftf l d fiT=

and

__ ft f S-dh =
dx 7"

+

+

_ (at) dfi, (3.32)

+

+

respectively.

by

-2--_1 due fo I ft f S__dfi
u, dx r

s (at)aft

Co liePe . Osl I CO uepe :l df cOs.

-- j crr _---I JO -_u a r -_u d fi
Pr u_poo 0fi 1o Pr uoopoo

26'0 fard_z,+ 1) Jo
(3.33)

The boundary conditions for r and s in terms of the Dorodnitsyn formulation are given

:-.-.-_, and s(1) = 0, (3.34)
li e
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in the case of heat transfer at the wail. For an adiabatic wall, the boundary conditions for s

are specified as

Oula__° = 0 and s(1) = 0. (3.35)

Numerical experiments have shown that the solution for r was generally inferior when a

wall boundary condition was imposed; therefore, the wall boundary condition available

from F.xtuation 3.2 is not used [ 18].

It has been shown that the Dorodnitsyn formulation reduces the nonlinear partial dif-

ferentiai equations governing two-dimensional, compressible, and turbulent flow to a set

of uncoupled integral equations by seeking the proper weighted combinations of variables

and equations. The integral equations are explicitly independent of density and represented

in the independent variables z and t_. The transformation from a body-normal coordinate

system (z and y) to a computational plane (z and fi) is depicted in Figures 3.1 and 3.2. One

benefit of this coordinate transformation is that the infinite domain in the y direction has

been replaced by a finite domain in the fi direction. A greater benefit is that the uniform

grid in _ automatically captures downstream boundary-layer growth and spatially provides

high resolution near the wall.

Y A

Figure 3.1 Airfoil Coordinate System

3.3 Semi-Discrete Galerkin Formulation

In order to apply the semi-discrete Galerkin method to the integral Dorodnitsyn equations

developed above, the general weighting function f(fi) must be replaced by a set of linearly

independent functions fj(fi). The weighting function is introduced as

fj(fi) = (1 - fi)Nj(fi), j = 1,2,...,M (3.36)
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Figure 3.2 Computational Plane

where Nj(fi) is the linear interpolation function at a particular node j, and M is the total

number of nodes. The Petrov-Galerkin finite element method is utilized by introducing

the term (1 - fi) to satisfy the requirement that fi(_) equals zero at the outer edge of the

boundary layer. The trial solutions for the dependent variables _, r, s, _, a, and ar are

introduced using the group finite element method and take the following form:

1 1 M

r - (1 - _) _ N_(_)bl,(z) (3.37)
i=!

M

r = (1 - fi) _ Ni(fi)b2i(z) (3.38)
i=1
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M

= (1- ,_)_ u,(_)b3,(x)
i=1

M

.s = _ Ni(fi)b4i(z)
T i=l

M

i=I

M

,,_-= (1 - _,)_ i,(_,)b6,(x)

(3.39)

(3.40)

(3.4a)

(3.42)

Third term:

Second term:

u_l dUefo'(1-fi2)[(1-"dN'idx u)---_u -Nj] [.(1-_)___Nibli]li=,M

1 du_ 1(1+5) (1-u)-_u -N.i Nidfibli
ue dz i=1

dfi

d 1 1 Nibli dfi = fiN.iNidfi i
_xx fi [(1 - fi)N./] (1 - 5) i=1 ,=I dx

First term:

_xx fi [(1 - fi)Nj] (1 - 5) Nibli dfi
i=1

1 dU_fo'(l_fi2)[( ' ^.dNj ] [ 1 M ]- u, dx - u)-d_u - N'i (1 - 5) y_ Nibli dfi
i=i

uo_p_ -_u - Nj (1- fi ) _--'_ dNi -_=1--_-b6i- i=1

Removing all terms that are independent of fi from the integral simplifies the Equation 3.43

as follows:

i=1

Substituting the approximate solutions and the weighting function into Equation 3.32

produces the following finite element equation:
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Therefore,afterintroducing

and

1Klii = fiNjNidfi,

_ (1 + _) (1 - - gj g_d_,,K3ji

1 due
el --" "_

ue dx '

(3.44)

(3.45)

(3.46)

(3.47)

1 (3.57)
C3 = C2_r,

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

1K4ji = fi(1 - fi)NjNidfi,

K5jl = fol(1 _ fi2)[(1 -u)--_-u^dNj_ Nj] Nidfi,

Z'K6ji = (1 - fi)2N./N/dfi,

1 [ ^.dNi ]KTj,=fo fi(1-fi)Nj (1-u)--_-Ni dfi,

I(lOj_ = (1 - a)2gjg, (1 - _)--_ - gk ,

(3.51)

(3.50)

C2 = Co u,p, (3.48)
u_poo

into Equation 3.43, the following system of first-order ordinary differential equations is

produced:
M M

M dbll (3.49)
Z Iflji - CI _ K3ji bli + C2 __, Ii2ii b6i
i=1 dx i=1 i=1

After substituting the approximate solutions into Equation 3.33, removing all terms that

are independent of fi from the integral, and introducing
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and

c,=2c 71)

the following system of first-order ordinary differential equations is produced:

M M M

K4ji dMi _ 2C1 _ K4ji Mi + C1 _ K5jl b41
i=! dx i=1 i=1

MM MM i1+ C2 _ _ I(8jik b6ib3k + C3 _ _/t'10jik b6ib3k
i=1 k=l i=l k=i 0

M M M

-- C3 E E I(9jik b6ibBk + C4 E 1(6.//b6i
i=1 k=l i=1

M

+ C4__,K7ji b6i
i=1

(3.58)

(3.59)

and

Abl_ +_ = bl_ +l - bl_. (3.62)

The superscript n denotes a particular streamwise, or x, position.

In order to develop a non-iterative marching routine, it is necessary to linearize FI_ '+!

by an expansion about the nth level following the approach of Briley and MacDonald [ 19]:

(OFl.i]n Obl,
FI_ +' = FI_+Az_,Obl,/ _+""

,_ FI'_ + k, Obl{ ] Abl_'+_ (3.63)

Substitution of the linearization into Equation 3.60 produces the following system of equa-

tions in bl:
M

_., l,:TjiAbl7 +' = FTj (3.64)
i=1

M

__, KljiAbl'_ +' = Ax [OFI_ +' + (1 - O)FlJ ,
i=1

M M

Flj : C1 __, liaji bli + (]2 Z I(25i b2i, (3.61)
i=1 i=1

(3.60)

where

The Galerkin integrals (K1, ..., K10) are further defined in Appendix A.

The second-order Crank-Nicholson scheme, obtained by using 0 = 0.5, produces an

efficient implicit algorithm for marching the solution in the x direction. Equation 3.49 is

approximated by
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ThevariablesKT and FT are defined as

and

[
- cr',=Eu2j, _,bl_ bit _/j'

MrTj = A_ [oct+'+ (, - o)cr]_, u3,,b,':
i=1

" }+ [oct+'+ (1- o)c_]_ u2j, _:. .
i=!

Similarly, applying the Crank-Nicholson scheme to Equation 3.59 gives

M

Y_ K4jl AM: +' = Ax [0F2) '+' + (1 - 0)F2_],
i=!

where

and

F2j

M M

= -2Ci __, K4ii b4i + Cl _ K5ji M,
i=i i=1

M M M M I I

+ C2 Z Y_ K8jik b6ib3k + C3 E _-, K 10jik b6ib3k
i=1 k=l i=1 k=l 0

(3.65)

(3.66)

(3.67)

M M M

- 6'3 _ _ If9jik b6ibak + C4 _ K6ji b6i
i=1 k=l i=I

M

+ C4 Y_ K7i_ b6;, (3.68)
i=1

h_7+_ = _7+1 _ _. (3.69)

Performing the same linearization technique for F2_ +1 as was done for FI_ +1 produces

the following system of equations in b4:

The variables KS and FS are defined as

= K4ji - OAz -2C_ '+IY_ h4ji" + C_'+'_ K5ji
"= '= i=I i=1

M

KSj,Ab4} '+1 = FSj (3.70)
i=1
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and

M M M M b6i b2k ln n C_+I n n+ C_+'Y__,lf8jikb6ib2k+ __,_,KlO.iik
i=l k=! i=1 k=! 0

]- C_ TM X_ X_ K9j,k b6_'b2_ ,
i=l k=l

(3.71)

MFSj = Az -2 [OC_+' + (I -O)C'}] _, K4j, b4i
i=I

M

+ [OCt +' -I-(I - O)Cr] Z IC5jib4i
i=I

M M

+ [OC_ +' + (1 - 0)C2 n]E E IC8,,k b6,b3k
i=1 k=l

. M i1+ [OC; +' + (I - O)C;] __, E KlOjik b6ib3,
i=1 k=l 0

M M

- [OC_ +l + (1 - O)C_] y_ _ If9jik b6ib3k
i=1 k=l

M

+ [0C2 +' + (1 - 0)C2] E K6.ii b6i
i=l

+ [C2 +' + (1 - O)C;] EK7ji b6i . (3.72)
i=1

Boundary conditions for r and s at the boundary-layer edge are automatically imposed

through the use of the (1 - fi) term in the trial solutions. As note previously, no wall

boundary condition for r, and hence Abl_ +_, is imposed. The boundary condition at the

wall for s, and hence AM2 +1, is given by

Ab4_ '+1 = Abl _,+1s_. (3.73)

The system of equations given by Equations 3.64 and 3.70 can be solved without

iteration by the Thomas algorithm at each streamwise location using a variable step size.

The variable step size is based on a comparison of the linearized and nonlinearized values

of F12 +l and F2_ +1. The maximum relative error expression is given by

F12 +1 (linearized) - F12 +1 (nonlinearized)
A = max

F 1_+_(nonlinearized)

F2} TM (linearized) - F22+i(nonlinearized)

F22 + i (nonlineari zed) (3.74)
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Alternately, the linearization error can be efficiently controlled by enforcing a maximum
Abln÷I Ab4,_+_

allowableratioot -' and The maximum ratioexpressionisgiven by
bl_ b4_ •

Abl_ +' AM_'+' IA =max b-_ ' b4_' " (3.75)

Given a maximum and minimum tolerance Am#,_ and A,,a_, respectively, the step size is

modified according to the following procedure:

Am;n < A < Amo_

A > Am_

step size is unchanged

step size is halved

step size is doubled

3.4 Self-Similar Solutions

The self-similar solution may be used near the leading edge to obtain the needed initial

conditions. In order to solve Equation 3.64 for the shear stress at the (n + 1) th streamwise

location, it is necessary to know the shear stress at the n th streamwise location. A number

of techniques have been used to obtain self-similar solutions for specific geometries within

certain regions. The classic Falkner-Skan and Illingworth-Stewartson series can produce

self-similar solutions for stagnation point and wedge flows with heat transfer [20], [21]. This

same method may be applied to the traditional Dorodnitsyn equations of motion (laminar

form of Equations 3.17, 3.20, and 3.22) to provide the initial 7- and s values. Even though

the governing equations of interest are turbulent, the laminar self-similar solutions are valid

in the region near the stagnation point where transition to turbulence has not yet occurred.

At a small distance from the stagnation point, the velocity u_ can be approximated by

u_ =uo_ m, (3.76)

where m is related to the pressure gradient coefficient/3 as follows:

277Z
/3 = -- (3.77)

m+l

Also, near the stagnation point A( = _ - 0 and Ax = x - 0 such that Equation 3.13 can be

written as
ttePe

= _x. (3.78)
tt_poo
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The similarity parameter a, used to reduce the number of independent variables, is given

by
]

a = r/k, 2C0_ ] (3.79)

3.4.1 Momentum Similarity

The development of the momentum similarity equation takes the same form as the classical

development. Using the no-slip boundary condition and integrating with respect to r/, the

continuity equation becomes

of/= - O--_ fidrl"

Representing the nondimensional velocity _ as

d_ ,

da

and substituting into Equation 3.80 gives

82o Oct

= aCa..__._v_,_ _ Zq,'

(_): _°°.

(3.80)

(3.81)

(3.82)

Substituting Equations 3.81 and 3.82 into the laminar form of Equation 3.20 generates a

momentum similarity equation of the following form:

W'" + ,,,a( (1 _ W'z) o(o,7 q_p" = 0 (3.83)

c0(_)'_ c0(_)'
The coefficients are evaluated by obtaining the same form of similarity equation as White

[20], which requires
±a___

Co(_)_'
and

Co(_)_ _.
772 _ 02ct

0_0_

Therefore, the final momentum similarity equation can be written as

hum (1 W'2) ( 1 )+_ - + _.Ti. ,e,.r,"= o,

with the following boundary conditions:

W(0)=W'(0)=0 and W'(_)=I

(3.84)

(3.85)

(3.86)

(3.87)
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3.4.2 Energy Similarity

Representingthenondimensionalenthalpyparameters as

= (3.88)

and substituting into the laminar form of Equation 3.22 along with Equations 3.81 and 3.82

generates an energy similarity equation of the following form:

Pr _'W'"]f_,, + __f_, _ 2Pr/_,_ + 2(7 - 1) (1 _ pr) [_,, 2 + =0 (3.89)
m+ I ('r+ I)

The energy similarity coefficients are evaluated according to the previous definitions for

and m. Heat-transfer boundary conditions are given by

- u_ and f_(oo) = 0, (3.90)

where T_ and To denote wall and stagnation temperatures, respectively. If an adiabatic wall

condition is prescribed, the boundary conditions are given as

fY(0) = 0 and _(oo) = 0. (3.91)

Equations 3.86 and 3.89 define a two-point boundary-value problem (BVP). Using

bisection for the shooting method along with a 4th-order Runge-Kutta scheme, the BVP

can be solved to produce an initial set of r and s values that can be used to begin the

marching routine. The value of r is proportional to W" and is calculated by the following

equation:
1

Off Oa'Ofi ((m_+l)uoopoo_W,, (3.92)
r= 0--_ = Orl oa - \ 267,0 u_p_x /

3.5 Turbulence Models

A turbulent boundary layer can be regarded approximately as a composite layer made up

of inner and outer regions which arise due to the different response of the fluid to shear and

pressure gradients near the wall [9]. In order to determine the eddy-viscosity #t in the inner

and outer regions, two models based on the mixing-length concept are used in the SDG

formulation.

Prandtl proposed that each turbulent fluctuation could be related to a length scale and

velocity gradient:

i001Pt _ /5/z _ (3.93)
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The mixing length7is relatedto the flow conditionsand takeson different valuesin the

innerandouterturbulentflow regions.

A single inner region eddy-viscosity model, which follows the form used by Cebeci-

Smith, was considered in this analysis [9]. The van Driest modified mixing-length formula

in terms of the Dorodnitsyn transformation is given by

2

_._2= ReS/2 poo ue pal:r, (3.94)

where l is the mixing length 0¢ = 0.41)

l= _¢y(1--eu+lA+). (3.95)

The parameter A + is dependent on the pressure gradient according to

A+ _- Ao ,, (3.96)

(1 + lOp+) _

where Ao = 26,

1

- _ Poo p_u,.3s dx , and u, = u_ _, _ poo (3.97)

The mixing length parameter l is related to the coordinates y+ and y which are obtained

from the solution by

Re po_ p_ u_. 1 uoo [f'
- --y, where y- Jo ldfL. (3.98)y+

Cope uo_ v/-Re u, pr

Two outer region eddy-viscosity formulations were considered in this analysis. The

first outer region eddy-viscosity model considered is based on the form used by Cebeci and

Smith [9]. The outer model is modified to account for intermittency near the edge of the

boundary layer ¢5:

/j_.tt= 0.0168 Re poo ue p2_5. (3.99)
# [I + 5.5(y/¢5) 6] Co pc u_

The second outer region eddy-viscosity model considered is based on the form developed

by Baldwin and Lomax [22]. Instead of using the boundary layer and displacement thickness

as parameters in the outer formulation, the Baldwin-Lomax model uses certain maximum

functions occurring in the boundary layer. The eddy-viscosity relation is given by

P.._t= 0.0168 Cq, Re poo Fm,,,,p2ym,,x ' (3.100)
[I + 5.5(Ck obV/Vm.x)6]Co V,
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where ymax is the value of y corresponding to Fm,x. The parameters Cq, and Ckleb are

calculated by the following expressions in order to fit the known properties of Coles' wake

law and equilibrium pressure gradients [23]:

3 - 4Ckleb (3.101)
Cep : 2Ckleb (2 - 3Ckleb "I'- C31eb)

2 0.01312 Ymax duc (3.102)
Ckl_b -- 3 0.1724 + _. iS,. -- U,. dx

The choice between the inner and outer eddy-viscosity formula is made by taking the

smaller value; the changeover typically occurs at fi _ 0.7.
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Chapter 4

Viscous-Inviscid Interaction

In many flows of practical aerodynamic interest, the effects of viscosity and turbulence are

confined to a relatively thin shear layer near the airfoil surface and wake. The flow over an

airfoil can therefore be divided into two regions: an inner region, where viscous effects are

important, and an outer inviscid region. Modelling the viscous and inviscid flow regions

separately while providing a mechanism by which each solution influences the other is

called Viscous-Inviscid Interaction (VII). A VII method organizes the viscous and inviscid

parts of the overall solution to interact in an iterative way so that convergence of the final

solution is achieved as economically and accurately as possible. The principle interaction

between the regions arises from the displacement effect of the shear layers which leads to a

thickening of the equivalent body with a corresponding change in the surface pressure [24].

The resulting interaction is labeled as either weak or strong, depending on the change in

pressure and the extent to which higher-order viscous effects influence the overall solution.

VII, based on a direct relationship between the viscous and inviscid regions of flow, is

applicable as long as the disturbances to the inviscid flow due to the viscous displacement

effect are small [25].

4.1 Viscous-lnviscid Coupling

The classical interaction approach is to obtain an approximation to the inviscid flow, extract

velocity and pressure from the inviscid solution, use the external conditions to obtain

an approximation to the viscous flow, extract displacement thickness from the viscous

solution, and use the viscous parameters to modify the original body geometry and obtain

another estimate of the inviscid flow. An alternative to adding the displacement thickness

distribution to the original body thickness is to impose a transpiration velocity boundary

condition at the body surface. These iterative cycles, depicted in Figure 4.1, continue until

the inviscid and viscous solutions are converged and compatible.
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Figure 4.1 Viscous-Inviscid Interaction Scheme

4.1.1 Displacement Thickness

The displacement thickness is the height by which a streamline is displaced upward by the

presence of the boundary layer. Considering the flow over a flat surface as depicted in

Figure 4.2, the no-slip condition at the wall causes a partial obstruction of the freestream

flow. This results in an upward deflection of the streamline passing through point h at

station 1 by a distance _" at station 2. Because the flat surface and the streamline form

the boundaries of a streamtube, the mass flow across stations 1 and 2 must be equal and is

expressed by

foh_e_ed_ = foh_zd_ + _fic_ ". (4.1)

Rearranging gives a familiar form of the compressible displacement thickness,

$'= 1 _, d9. (4.2)

The nondimensionalized compressible displacement thickness in terms of the Dorodnitsyn

formulation is given by

= 2_, ucp, _ (1 - + _(1 -r Pc _ r

('r+ 1)u_ u_ [i- -Sd_. (4.3)
27 pc _ J0 r
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The advantage of using the displacement thickness as the coupling mechanism between

the viscous and inviscid solutions is its simplicity. The disadvantage of the displacement

thickness approach is that the inviscid grid must be generated after each viscous iteration

because the body about which the inviscid flow is computed changes when the displacement

thickness alters the effective body. An additional disadvantage of the displacement thickness

approach is the possibility of supercritical VII which does not allow smooth transition to

separation [26]. It has been shown that the classical displacement thickness interaction

becomes supercritical when Moo _ 1.5 _ 2.0, depending on the history of the turbulent

boundary layer [27].

4.1.2 Transpiration Velocity

The transpiration velocity is an inviscid normal-velocity boundary condition which is

imposed at the body surface to simulate the displacement of the inviscid flow by the viscous

flow momentum defect [24], An expression for the transpiration velocity can be obtained

by integrating the difference between the inviscid and viscous continuity equations across

the boundary layer while applying the Prandtl boundary-layer and uniform inviscid-flow

assumptions [26]. The transpiration velocity expression is given by

o (4.4)
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The nondimensionalized compressible transpiration velocity in terms of the Dorodnitsyn

formulation is given by

vt=Ue_x + \ dx +- , odpo)p.6". (4.5)

The transpiration velocity distribution should result in a inviscid streamline coincident with

the effective body obtained with the displacement thickness approach. The advantages of

the transpiration velocity approach are that the inviscid grid need not be regenerated after

each viscous iteration and that the interaction always allows smooth transition to separation

[271.

4.2 Euler Equation Solver

A fast and robust two-dimensional Euler code (GAUSS2), developed by Dr. Peter M.

Hartwich of Vigyan Inc., is used as the inviscid flow solver in the VII scheme [28], [29].

The method uses a floating shock-fitting technique that has been combined with a second-

order accurate upwind scheme based on the split-coefficient-matrix (SCM) method and

with a time-implicit, diagonalized approximate-factorization (AF) algorithm. The result is

a fast and robust two-dimensional Euler code that produces accurate solutions for shocked

flows on crude meshes which are not adapted to the shock fronts.

The equations for two-dimensional, compressible, and nonconservative Euler equations

for a polytropic gas at constant 3' are given in general coordinates as

Qt, q- AQ_, + BQ,, = 0, (4.6)

where

q=(a',u',v',s') r, (4.7)

and the vectors A and B are defined by a coefficient matrix C [28]. The primes denote

inviscid dependent variables where a', u', v', and s' are speed of sound, cartesian velocities,

and entropy, respectively. The dependent variables have been nondimensionalized as

follows:
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4.2.1 Viscous-Inviscid Interfaces

In order to allow the boundary-layer and Euler methods to work together in an VII scheme,

it is necessary to develop a set of expressions which convert the variables from one type

of nondimensionalization to another. The boundary-layer method employs a body-normal

coordinate system while the Euler method employs a cartesian coordinate system, so a

coordinate system conversion must be performed. Also, the methods use different reference

values to nondimensionalize velocity and pressure, so a dependent variable conversion must

be performed. The variable conversions which account for both the coordinate system and

nondimensionalization differences are summarized in Table 4.1, where 0 is the local body

angle.

Table 4.1 Viscous-Inviscid Variable Conversion

Variable Euler ---, Boundary Layer

Length

Velocity

Pressure

x = _/xa+y a

u = (u'cosO + v'sinO)v/'_

p = p'p_
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Chapter 5

Numerical Results

5.1 Convergence Properties

The convergence properties of the Dorodnitsyn finite element approximation of r are plotted

in Figure 5.1. The average discrete root-mean-square of the relative error is calculated by

the following equation:
!

r_m, = ri,_, 1 ( M - 1)
L i-1

(5.1)

The exact value of r is obtained from a solution of the similarity equations developed in

Section 3.4.1 for flow over a flat plate with zero pressure gradient (3 = 0). The 4th-order

Runge-Kutta step size was set to Ac_ = 0.01. The results presented in Figure 5.1 are for

8 values of Aft corresponding to a discretization of 3, 4, 5, 7, 9, 11, 15, and 19 nodes at

x = 0.5 along the plate. In order to evaluate the convergence properties of the spatial

discretization across the boundary layer, the step size was held at a small constant value to

minimize the influence of the marching routine. Examination of the figure indicates that

the use of linear elements achieves the theoretically expected second-order convergence.

It can be seen that the convergence rate of the scheme decreases slightly as the number

of nodes increases. The decreasing convergence rate can be attributed to the decrease

in accuracy of the linearized marching scheme with increasing number of nodes. An

extensive analysis of convergence properties for favorable and adverse pressure-gradient

cases as well as quadratic elements may be found in Reference [18]. Fletcher and Fleet

showed that the accuracy of linear elements on coarse grids are comparable to quadratic

elements, and the convergence properties for the adverse and favorable pressure-gradient

cases are comparable to the zero-gradient case.

5.2 Flat Plate

An assessment of the accuracy of the semi-discrete Galerkin (SDG) method may be per-

formed by examining the ability of the method to reproduce the well-known compressible
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Figure 5,1 Nondimensional Shear Stress Convergence

Results for a Flat Plate at Moo = 0.800, Re = 5000

laminar boundary-layer solution over a thermally-insulated flat plate with zero pressure

gradient. The computations were performed at a Mach number of 0.8 and a Reynolds

number based on plate length of 5000. A discretization of 9 nodes was used across

the boundary layer. The marching routine step size was efficiently controlled by setting

Amin = 1.0 x 10 -4 = 0.1Am,,_ to maintain the ratio of _ and _ Again, an exact

analytical solution for this flow may be obtained by solution of the Falkner-Skan similarity

equation [20]. Figure 5.2 shows excellent agreement between the exact and computed

nondimensional shear-stress values at :r = 0.5. The similarity property of the solution was

also verified by examining the profiles at different stations along the length of the plate.

Excellent agreement was observed except for stations close to the leading edge where effects

of the stagnation-point flow are present. The skin friction along the plate was calculated

using the relation
22Co u_ p_

CI= x/,-ff_ u_ poo r_,. (5.2)

To illustrate the high accuracy of the Dorodnitsyn formulation on extremely rough grids,

both 3 and 9-node coefficient of friction solutions are plotted along with the exact solution



37

0.6

0.5

0.4

0.3

0.2

0.1

• SDG
Exact

0 i wo 0.2 o14 0.6 o;8

Figure 5.2 Comparison of Computed and Exact Nondimensional Shear Stress

Profiles for a Flat Plate at z = 0.5, M_o = 0.800, Re = 5000

in Figure 5.3. There is excellent agreement between the 9-node and exact solutions. The

3-node solution produced good results except in the region very close to the leading edge.

5.3 NACA 0012 Airfoil

The NACA 0012 was chosen as the primary test airfoil for the compressible turbulent VII

validation. The NACA 0012 is a symmetric airfoil which has been tested both computa-

tionally and experimentally by a great number of researchers. Of particular importance to

the VII scheme is that the experimental data at zero angle of attack is not affected by wall

interference due to lift. The airfoil is tested for attached turbulent flow at high Reynolds

numbers and transonic speeds as shown in Table 5.1. In order to minimize the influence

of wind tunnel wall-interference effects in the comparison of experimental and computed

results, the numerical angle of attack was varied in each case to match the computed lift

and the experimental normal force coefficients. In each of the NACA 0012 cases, the

161x31 C-grid shown in Figure 5.4 was used by GAUSS2 to solve the inviscid equations of

motion. The outer boundary of the C-grid is located 5 to 6 chord lengths from the airfoil in
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all directions. The transpiration velocity boundary condition was used as the VII coupling

mechanism and was relaxed after each global VII iteration according to

vq (1 -,,ret= '4 + (5.3)

where q denotes a particular global VII iteration and w is a relaxation parameter. The

relaxation parameter was set equal to 0.1 for all NACA 0012 calculations. Convergence

of the scheme was assumed when lift and total drag coefficients changed less than 0.1%

between global iterations. The maximum number of global VII iterations was set at 50,

and the ratio of local inviscid to viscous iterations was set at 100. A boundary-layer

discretization of 9 nodes was used and the marching routine was controlled in the same

manner as the flat-plate calculations by setting t = 5.0 x 10 -4.

5.3.1 NACA 0012- Case A

This test case consists of a NACA 0012 airfoil at a numerical angle of attack of -0.14, a

freestream Mach number of 0.499, and a Reynolds numberof9.0 x 106. The flow is attached
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Table 5.1 NACA 0012 Test Cases

Case M¢¢ Re a_p a,,,,m Ref.

A

B

0.499

0.700

9.0 x 106

9.0 x 106

[30]

[30]

and subsonic over the entire airfoil surface. Transition to turbulence was numerically tripped

at the leading edge. The computed coefficient of pressure compares reasonably well with

experiment but is slightly underpredicted over the aft section to the trailing edge of the

airfoil as shown in Figure 5.5. No experimental data was readily available to compare the

computed friction coefficient and displacement thickness, but both C1 and 6" are plotted in

Figures 5.6 and 5.7 for future reference.

5.3.2 NACA 0012- Case B

This test case consists of a NACA 0012 airfoil at a numerical angle of attack of 1.37, a

freestream Mach number of 0.700, and a Reynolds number of 9.0 × 10 6. For this case,

the flow is attached and just slightly supersonic near the leading-edge upper surface. A

comparison of experimental and calculated coefficient of pressure is shown in Figure 5.8.

The predicted Cp compares well with experiment but slightly overpredicts the peak value

at the supersonic region near the leading edge and deviates at the trailing edge. Again, the

computed skin friction and displacement thickness values are plotted in Figures 5.9 and

5.10 for future reference.

5.3.3 Aerodynamic Characteristics

Figure 5.11 shows a comparison of lift coefficient vs. angle of attack for the NACA

0012 airfoil at Mo_ = 0.700 and Re = 9.0 × 106. The SDG VII scheme overpredicts

coefficient of lift at low angles of attack, but the prediction improves at higher angles of

attack. For angles of attack above 1.54, the flow is more strongly transonic and eventually

separates. Drag polar comparisons are displayed in Figure 5.12 for the NACA 0012 airfoil

at Moo = 0.700 and Re = 9.0 x 106. The data again shows that the computed lift coefficient

is overpredicted at lower angles of attack. It is also noted that the computed drag coefficient
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is underpredicted at lower angles of attack with an improved prediction at higher incidence.

The flowfield is subsonic for CL values of approximately 0.2 and lower. Drag values below

this point correspond to pressure plus skin friction drag. Drag values above this point have,

in addition, a wave drag component. Transonic drag-rise characteristics for the NACA

0012 airfoil at zero-lift conditions are displayed in Figure 5.13. The turbulent boundary

layer was numerically tripped at the leading edge, and all computations were performed at

a Reynolds number of 9 million. The cross-hatch range of experimental values is based

on a "best of six" set of data as described by McCroskey [32]. An underprediction of the

drag coefficient is observed at lower Mach numbers with a trend toward improved results

at higher Mach numbers.

0.8

0.6

CL 0.4

0.2

• SDG VII
* Exl_eriment

0
o i _ _ _ s

Figure 5.11 Comparison of Lift Coefficient vs. Angle of Attack for

the NACA 0012 Airfoil at M_ = 0.700, Re = 9.0 × 10 6

5.4 RAE 2822 Airfoil

The RAE 2822 was chosen as a supplementary test airfoil for the compressible turbulent

VII interaction. The RAE 2822 is a supercritical airfoil with a moderate amount of aft

camber which poses a challenge in achieving VII convergence. Also, the experimental
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data in Reference [31] contains a number of boundary-layer and wake parameters such

as displacement thickness, momentum thickness, and skin friction which are helpful in

validating the boundary-layer solution. The airfoil is tested for attached turbulent flow at

high Reynolds numbers and transonic speeds as shown in Table 5.2. A C-grid similar to the

Table 5.2 RAE 2822 Test Cases

Case Moo Re a_xp t_n_,m Ref.

A

B

C

O.676

0.676

0.725

5.7 × 10 6

5.7 × 10 6

6.5 x 10 6

-2.18

2.40

2.55

-2.18

1.90

2.10

[31]

[31]
[31]

one use for the NACA 0012 test cases was used for all of the RAE 2822 calculations. The

relaxation parameter was reduced to w = 0.05 which produced a slower but more stable VII

convergence. Consequently, the maximum number of global VII iterations was increased

to 75. The discretization and marching-routine controls were set at values equal to those

used in the NACA 0012 test cases. For the all of the RAE 2882 cases, the skin friction

coefficient is based on the boundary-layer edge dynamic pressure.

5.4.1 RAE 2822- Case A

This test case consists of a RAE 2822 airfoil at a numerical angle of attack of -2.18, a

freestream Mach number of 0.676, and a Reynolds number of 5.7 x 106. The flow in

this case is subsonic and attached over the entire airfoil surface. The computed coefficient

of pressure shown in Figure 5.14 compares well with the experimental values. The Cp

is slightly underpredicted on the lower surface near the leading edge and again deviates

from experiment at the trailing edge. The coefficient of friction and displacement thickness

results given in Figures 5.15 and 5.16 have good agreement with the experimental values.

As seen in Figure 5.15, turbulence was tripped at x = 0.11. Figure 5.17 shows the

velocity profiles in the boundary layer at three x-locations. The velocity profile deviation

from experimental values is attributed to the fact that the SDG method calculates velocity

indirectly since shear stress is a dependent variable.
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Figure 5.15 Comparison of Upper-Surface Skin Friction Coefficient for the RAE
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5.4.2 RAE 2822 - Case B

This test case consists of a RAE 2822 airfoil at a numerical angle of attack of 1.90, a

freestream Mach number of 0.676, and a Reynolds number of 5.7 × 106. The flow is

attached over the entire surface and slightly supersonic near the leading edge on the upper

surface of the airfoil. Transition to turbulence was numerically tripped at x = 0.03. The

computed coefficient of pressure is compared with experimental values in Figure 5.18. The

Cp prediction on the lower surface of the airfoil is in good agreement with experiment except

at the trailing edge, and the upper-surface prediction is slightly below experimental values

over the aft section of the airfoil. It should be noted that the pressure coefficient prediction

in the supersonic flow region is in good agreement with experiment. Both coefficient of

friction and displacement thickness values compare well with the experimental values as

shown in Figures 5.19-5.20.
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Figure 5.18 Comparison of Pressure Coefficient Distribution for the RAE

2822 Airfoil at Moo = 0.676, C_n,,m = 1.90, Re = 5.7 x 106



50

0.008

0.006

CI 0.004

0.002

SDG VII
• Experiment

0
o 0:2 0:4 0:6 0:8 1.o
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5.4.3 RAE 2822 - Case C

This test case consists of a RAE 2822 airfoil at a numerical angle of attack of 2.10, a

freestream Mach number of 0.725, and a Reynolds number of 6.5 x 106. The transition to

turbulence was again numerically tripped at z = 0.03. For this case, the flow is attached

and supersonic on the upper surface where a moderately strong shock wave is experienced.

A comparison of experimental and calculated coefficient of pressure is shown in Figure

5.21. The predicted Cp compares relatively well with experiment except at the shock wave

which is predicted upstream of the experimental result. The coefficient of friction and

displacement thickness results given in Figures 5.22 and 5.23 have good agreement with

the experimental values.
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Figure 5.21 Comparison of Pressure Coefficient Distribution for the RAE

2822 Airfoil at Moo = 0.725, c_,,_,m = 2.10, Re = 6.5 x 10 6

5.5 Grid Refinement Study

A grid refinement study was performed to demonstrate the sensitivity of computed force

coefficients to the grid spacing used in the SDG VII scheme. The NACA 0012 airfoil
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was solved at flow conditions given in Case A for a number of viscous finite element

discretizations and inviscid grid sizes. Figure 5.24 is a plot of computed lift coefficient

vs. finite element space width for coarse (81 x 17) and fine (161 x 33) inviscid grids.

The trend is to decrease the lift coefficient with increasing space width. The effect of grid

spacing on the computed drag coefficient is shown in Figure 5.25, where the trend is to

increase the drag coefficient with increasing space width. The relatively small slope of

each curve indicates the method produces reasonable drag levels on coarse grids, which is

a highly-desirable characteristic of any computational method.
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Figure 5.24 Comparison of Lift Coefficient vs. Boundary-Layer

Space Width for the NACA 0012 Airfoil - Case A

5.6 Aerodynamic Force Coefficients

A summary of computed lift and drag coefficients for the SDG VII method is displayed

in Table 5.3. All drag coefficient values are in terms of drag counts where Co = 1 count

is equivalent to CD = 0.0001. Since the numerical angle of attack was varied in each

case to match computed lift and experimental normal force coefficients, it is important to

note that an_,m was within the accepted corrected angle of attack range for wind tunnel
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Figure 5.25 Comparison of Drag Coefficient vs. Average

Grid Spacing for the NACA 0012 Airfoil - Case A

wall-interference effects [33]. The computed coefficient of drag results for the SDG VII

scheme were on average predicted approximately 15% lower than experimentally obtained

results. The underprediction of drag is more pronounced at lower angle of attack cases.

The current state-of-the-art capabilities for attached flow lift and drag predictions are +3%

range for lift and +5% range for drag [33].
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Table 5.3 ForceCoefficientComparison

NACA 0012
Case

A
B

RAE 2822

Numerical
CL CD Coy CD_

-0.019 58 -7 65

0.242 70 7 63

Numerical

Case

A

B

C

CL CD Cop CDv

-0.121 70 7 63

0.565 75 8 67

0.658 86 21 65

Experimental
CL Co

-0.013 77

0.241 79

Experimental

CL Ca

-0.115 79

0.566 85

0.658 107
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Chapter 6

Conclusions

The application of the Dorodnitysn transformations to the boundary-layer equations pro-

vides a spatial coordinate which automatically follows boundary-layer growth and gives

high resolution near the wall which is important in turbulent flows where near-wall velocity

gradients are large. The transformed spatial domain is effectively modelled with finite ele-

ments to provide accurate results on coarse grids. Modelling the group terms for viscosity

by the group finite element method leads to an important economy in the formulation since

/_t need only be evaluated at the nodes. The use of a non-iterative streamwise marching

routine also adds computational economy to the method. The resulting boundary layer

code can be used to solve any smoothly-connected airfoil shape without modification and

is easily coupled with existing inviscid flow solvers. The transpiration velocity approach

used to couple the particularly fast and accurate Euler solver used in this analysis serves as

a computationally efficient and easily implemented VII coupling mechanism. Convergence

of the overall interaction procedure for both the NACA 0012 and RAE 2822 airfoils was

achieved in relatively few global iterations while achieving results of adequate engineering

accuracy.

Future work with the SDG method should include the use of a maximum reversed

flow velocity concept in order to successfully model separation while still retaining a finite

spatial grid. Also, the marching routine could be further improved by possibly using a

trigonometric streamwise coordinate transformation to smooth external velocity gradients

at the leading and trailing edges of the airfoil.
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Appendix A

Galerkin Integrals

Klji =

ff+ aNjNjda
j-I

fij+l+ fiNjNjdfi

Czj+t+ fiNjNj+ldfi

(A.1)

K2)i =

+

+

+

fij+l

fij+l

Jfij

dwj(1 - fi)--_- - Nj

(1_a)dNj

dNj
(1- _,)--d_-- N_

I

i dN_
(1- a)--j-/-- 55

(1 -- fi) dNj-1 Nj-I] dfidfi

[(l-_)dA_ _dfi N_] dfi

(1 _ fi) dNj---_-u - Nj] dfi

[(,_ _)dNJ+,daNj+,]d_

(A.2)

K3ji =

+

L% (l+fi)[ (1-fi)dNj ]"%-, _ - Nj Nj_ldfi

'b (1 + fi) [(1 _ fi)dNj,_, --_-u -N.iNj

[,+, [ _,)dNj+ (l+fi) (1- -Nj
J% dfi

/o,+, [+ (l+fi) (1- -Nj
.% dfi

(A.3)
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- _(1-_)N, ij__d_
j-!

ff'+ fi(l-fi)NjNjdfi
3--1

+ fi(1 - fi)N:.Njdfi

+ fi(l -fi)N.iNj+,dfi
Jdj

CA.4)

KSjl = ff'J
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+ ff'_
j-I
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U3 1

(1 _2 ^+ - _,)NjNjd_,
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¢_+1 _+ (I a)2NjNjdfi
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ff+ ,_(1- ,_)Nj
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J_j
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dfi ]
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(A.7)
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Introduction
A method is developed for solution of the two-dimensional, steady, compressible, turbulent

boundary-layer equations and is coupled to an existing Euler solver for attached transonic

airfoil analysis problems. The boundary-layer formulation utilizes the semi-discrete Galerkin

(SDG) method to model the spatial variables with linear finite elements and the time-like

variables with finite differences. A Dorodnitsyn transformed system of equations is used to

replace the inf'mite spatial domain with a f'mite domain thereby permitting the use of a uniform

finite element grid which provides high resolution near the wall and automatically follows

boundary-layer growth. The second-order accurate Crank-Nicholson scheme is applied along

with a linearization method to take advantage of the parabolic nature of the boundary-layer

equations and generate a non-iterative marching routine. The SDG code can be applied to any

smoothly-connected airfoil shape without modification and can be coupled to any inviscid flow

solver. A direct viscous-inviscid interaction is accomplished between the Euler (GAUSS2) and

boundary-layer (SDGM) codes through the application of a transpiration velocity boundary

condition. Gross effects of turbulence in the boundary layer are modelled through the use of a

zero-equation algebraic Cebici-Smith or Baldwin-Lomax eddy-viscosity model.

Program Structure
There are three programs which comprise the current airfoil analysis package. The

boundary-layer and Euler codes are called SDGM and GAUSS2, respectively. The interaction

of the inner and outer region flow solvers is accomplished by a third control code called VII.

There are a number of input and output date files which are utilized by the three codes. The

control code VII is the only code which is explicitly invoked from the command line, and VII

consequently uses internal system calls to execute either GAUSS2 or SDGM to iteratively

perform the viscous and inviscid flow calculations. GAUSS2 utilizes a cartesian C-grid to

solve for the entire inviscid flowfield while SDGM uses a body-normal coordinate system to

solve for the viscous flowfield on the upper and lower surfaces of the airfoil.

Data Files
The following figure shows all of the data files which are either read or written by the three

codes. Arrows indicate whether the data is being read or written by the codes and indicates the

interaction of data files between the codes. Many of the data files are used for interim data

storage purposes and are not of particular interest to the end-user of the programs, but they are

included here for completeness. The following is a list of data files which should be properly

edited and available to the codes in order to start a flow analysis procedure:

Filename Description

I) viinput.dat

2) sdgminputl .dat

input data used by VH to control overall viscous inviscid interaction

process

input data used by SDGM to control viscous flow calculations on

upper surface of airfoil



3) sdgminput2.dat

4) siminputl.dat

5) siminput2.dat

6) input

7) AIRGEO

input data used by SDGM to control viscous flow calculations on
lower surface of airfoil

input data used by SDGM to control similarity solution calculations

on upper surface of airfoil

input data used by SDGM to control similarity solution calculations
on lower surface of airfoil

input data used by GAUSS2 to control inviscid flow calculations

input data used by GAUSS2 which contains inviscid C-grid

The following is a list of data files which contain the final output:

Filename Description

8) convergence.dat

9) fcoeff.dat

10) bl2ext.dat

11) pcoeff.dat

output data generated by VII which contains convergence history of

aerodynamic force coefficients

output data generated by SDGM which contains skin-friction
coefficient over the airfoil surface at streamwise locations based on

the viscous marching algorithm

output data generated by SDGM which contains extrapolated

integral quantities used in interaction algorithms at streamwise

locations based on the inviscid grid

output data generated by GAUSS2 which contains pressure
coefficient over the airfoil surface at streamwise locations based on

the inviscid grid

Structure and Guidelines
The following is further definition of the necessary data files with an example format, variable

definitions, and parameter guidelines:

1) viinput.dat

iinit

istart

iend

abschangel

abschange2

iinit - arbitrary starting number for global vii iterations ( typically 1 )

istart - number of iterations to wait before checking for convergence ( typically 1/relax )

iend - maximum allowable number of global vii iterations ( typically 50 )

abschangel - minimum absolute change in lift coefficient to signal vii convergence

( typically 0.001 )

abschange2 - minimum absolute change in total drag coefficient to signal vii convergence

( typically 0.0001 )



2) sdgminputl.dat

3)

4)

node

theta

pr
re

initx

tOtX

delx

transx

maxerror

extrbl

seprbl
relax

node - number of nodes in f'mite-element discretization ( typically betwen 7 and 13 )

theta - implicimess factor for crank-nicholson ( typically 0.5 )

pr - prandtl number ( typically 1.0 )
re - freestream reynolds number based on chord

initx - starting cartesian x/c location ( typically 5.0 E-4 )

totx - ending cartesian x/c location ( typically 1.0 )

delx - initial finite-difference marching step ( typically 1.0 E-6 )

transx - percent of cartesian x/c that transition to turbulence occurs
maxerror - maximum allowable ratio of the inverse shear stress nodal value and the

change in the inverse shear stress nodal value ( typically 1.0/(2^(node+2)) )
extrbl - maximum value of the inverse shear stress nodal value that indicates the onset of

separation and the need to extrapolate future integral values ( typically 10.0 )

seprbl - maximum value of the inverse shear stress nodal value that indicates separation

( typically 100.0 )

relax - vii relaxation parameter for the coupling mechanism ( typically 0.1 )

sdgminput2.dat - same as above

siminput 1.dat

alphastart alphaend h eps

zguess(1) zguess(2) zguess(3) zguess(4)

ebctype
twto

m

alphastart - starting value of similarity parameter alpha ( typically 0 )

alphaend - asymptotic ending value of similarity parameter alpha ( typically 10 )

h - space width for similarity parameter alpha ( typically 0.01 )

eps - error tolerance for shooting method convergence ( typically 1.0 E-5 )

zguess(1) = lower bound for unknown momentum boundary condition ( typically 1.93

for stagnation point flow )



zguess(2) = upper bound for unknown momentum boundary condition ( typically 1.94

for stagnation point flow )

zguess(3) = lower bound for unknown energy boundary condition ( typically -10*twto

for adiabatic case )

zguess(4) = upper bound for unknown energy boundary condition ( typically 10*twto

for adiabatic case )

ebctype - flag to indicate type of energy wall-boundary condition ( 0=adiabatic, 1=heat

transfer )

twto - ratio of wall and stagnation temperatures ( typically 1.0 )

m - falkner-skan pressure gradient factor where beta = (2*m)/(m+l) ( typically 1.0

for stagnation point airfoil flows)

note: the most computationally efficient case is to set twto and pr = 1

5) siminput2.dat - same as above

6) input

alpha math

cfl crib ncyc iflaga iflagb sigma theta

connect darcy xp 1 xp2 xp3 xp4

itedge rnose xmax

ncycr

alpha = angle of attack in degrees
mach = freestream mach number

cfl = ( typically 10.0 )

crib = local courant number ( typically 1.0 E-3 )

ncyc = number of total cycles (typically > 500 )

iflaga = number of total cycles before shock fitting ( typically 50 )

iflagb = ( typically 9999 )

sigma = ( typically 1.015 )

theta = ( typically 60.0 )

connect = ( typically 0 )

darcy = ( typically 0.0 )

xpl = ( typically 1.0 )

xp2 = ( typically 1.0 )

xp3 = ( typically 1.0 )

xp4 = ( typically 1.0 )

itedge = number of inviscid nodes from edge of inviscid grid to trailing edge of the

airfoil ( typically 14 )

mose = ( typically 1.58 E-2 )

xmax = ( typically 7.0 )

ncycr = number of restart cycles ( typically < 100 )

7) AIRGEO - see example file




